ON THE INITIAL HEATING OF A BOUNDED VOLUME
OF A CONTINUOUS MEDIUM

A. D. Myshkis and L. A, Temkin UDC 536.24.02

We examine the asymptotic behavior of the solutions of the heat conduction equation in a
problem concerning initial heating. We focus our main attention on the term in the expan-
sion which determines the gradient of the temperature field.

If the flow of heat through the surface of a body in a direction from the outside toward the interior is
positive, the body begins to warm up. The study of this initial heating is interesting from a theoretical
point of view (it is the simplest example of a non-established process in a system with an infinite number
of degrees of freedom); it also has numerous applications. We present here some simple general con-
siderations in this regard; in addition, we present the results of the calculation of various methods for
the initial heating of a spherical volume according to a linear law,* These results are applied to an ap-
proximate calculation of a thermo-capillary force acting on a small heterogeneous body placed in a liquid-
filled container.

It is also of interest to consider other problems of mathematical physics, which lead to non-estab-
lished processes, in particular, to parameters varying according to a linear law.

1. For simplicity we consider a homogeneous isotropic medium occupying a domain D, bounded by
a closed piecewise-smooth surface S. (A major part of our discussion carries over directly to nonhomo-
geneous and nonisotropic media, and, mathematically, to a domain with an arbitrary boundary; it also
carries over to a wide class of parabolic equations and systems whose extent it would be of interest to de-
fine more exactly). Let, ¢, ¥, and ® = y/c be, respectively, the specific volumetric heat capacity, the
coefficient of thermal conductivity, and the coefficient of thermal diffusivity; also let u(x, t) (x = (x4, %,
x3)) be the temperature field, and let q(x, t) be the heat flow intensity applied throughout the volume, cal-
culated per unit volume and unit time. Since the heat flow passing into D through S can be interpreted as
a heat flow inserted into D in the immediate proximity of S, with D thermally insulated, then, with no loss
of generality, we can formulate the initial heating problem as a problem concerning the solution of the
equation

gl; = %Au -+ L g(x, t) (0<t<<oo, x¢D=DY §) (1)
subject to the 'boundary condition
0
> =0 <t ) @)
on S
and an initial condition
Uy =4y (%) (x€D). 3)

*Linear, homogeneous, initial heating of a spherical volume and of an infinite circular cylinder through
the surface were studied in [1,2]. Nonlinear, homogeneous, initial heating of a spherical volume was
studied in [3]. The following terminology is employed for linear initial heating: quasi~stationary behav-
ior, regular behavior of the second kind, linear regular behavior.
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Moreover, the given function q{x, t) can be a generalized function of at most the first order with support
on D x [0, =], i.e., if the concern is with applied problems, then, along with heat sources distributed
throughout the volume, we can have sources concentrated on surfaces, curves, and at individual points in
D or on S. The initial function uy(x) can also be a generalized function, the solution being understood in
the standard generalized sense. We remark, also, that D can have multiple boundary points; then in D
each multiple boundary point A is considered only as many times as its multiplicity according to the var-
ious methods of approach to A from D.

2. The study of the asymptotic behavior of the solution is based on an application of the Green's
function G{x, t; &) (%, 565, 0 = t < »), which serves as the solution of the problem (1)-(3) when q =6 (x
- £)6(t), uylx) = 0, or, equivalently, whenqg = 0,uy(x} = (1/¢)6(x—£). This function is symmetric (G(x, t;
£) = G(£, t; x)), is continuous in the set of its arguments outside of the set {x = £, t = 0}, and has for t
— o« the asymptotic representation

Gx, t; &) =

1 I
4G, (x, 1 &) = ——— - O(exp (— A D), 4)
Dl 1 { 3] 21D ( p( )
where |ID| = mesD, Ay is the smallest positive characteristic value of the second boundary value problem
for the Laplace operator in D, and the estimate of the remainder term in equation (4), as it is also in the
formulas to follow, isuniform with respect to x and &.

The solution of the initial problem (1)-(3} can be written with the aid of the Green's function in the

form of a sum of integrals
£

u(x, )= {dv [Gr, = 8)q(E 1 dE+c[Gx £ Yu,@E)dt. ®)
0 D D
From this, by virtue of the relation (4), we can make a statement, first of all, concerning the influence of
the initial function uy(x) on the asymptotic behavior of the solution as t — «; it adds a constant term and a
term of order not higher than exp (—Ayt). Therefore, in problems where these terms are not essential,
the initial function can be changed arbitrarily, i.e., we can consider the problem as one without an initial
condition,

3. Putting uy(x) = 0 for simplicity, we obtain from equation (5), by virtue of the relation 4), the re-

sult
!
1 (* 1o
“e D=5 jdrjq(a. Od
[1] D
£
j dv g Gy (51— D6 DdE=u () = u(x, 0. ©
D

When ‘5) gdx = 0, the first term is the principal term, but since it is a function of t only, i.e., it de-
termines the initial heating of the portion of the medium in the body under consideration, it is of essential
interest to study the second term, which determines the gradient of the temperature field. For this we
carry out an integration by parts with respect to t, which yields

Uy (%, 1) = [Gy(x, 0; B)G(E DdE— [ Gy(x, &5 B)q (& O)dE
D D
¢
— [ G t—m 0e @ v, (0

§ D
where

G,(x, & B) = ? G, (%, T; E)dr = (O (exp(— M)
¢

If q'¢(x, t) is infinitely small in comparison with q(x, t} as t — =, then the principal term on the right
side of equation (7) is the first term uy (x, t); which has a comparatively simple structure; as t— « the
order of the second term is O(exp — A4t); to define more exactly the order of the third term, we can carry
out a repeated integration by parts, which, incidentally, makes it possible to determine the asymptotic re~
presentation of the solution more precisely. Moreover, if q exhibits a power-law type behavior, we can

then use the simple formula | exp(—A{t—1))7Pd7 ~ (1/MtP (t — =), valid for A > 0 for real p of arbitrary
1

sign.
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4. Tt follows from Eq. (6) that if we replace q(x, t) by q(x, t), then ﬂ Y [q(x, t)~q(x, t)]ldxidt < = be-
L)

comes ﬁ’i (t) —uy (t) = const (@ is formed for the solution with the altered flow). If max g, t)—qlx, t)|

~

~ 0, then max lu,(x, t) —u,lx, 0= 0. If S 13(x, t)—qlx, t)ldx— 0, then | fiy{x, t)~ u,(x, t)ldx — 0.
4 - -+ D F

{00 x o ‘D S

5. The Green's function G admits the expansion

P ST (D E —Ad),
6s, 15 9= i Ef,(x)f](i)exp( b

where the summation extends over all positive characteristic values A i of the second boundary value prob-
lem for the Laplace operator in D, and where fj (x) is understood to be a normalized characteristic function
corresponding to A i From this we have

Gyt £ 9 = = §) S hr (@ exp () )
H 7

and we can therefore write the first term on the right side of equation (7) in the form

oy (5 1) = =~ D b f & O dE-f,(x).
Fal

6. We consider the simplest case of linear initial heating in which the flow entering the medium is
stationary, i.e., @ =q(x). In this case, from the relations (6) and (7) we obtain

wlx, )=~y (9 -+ O (exp(— 1)

where

ID|

D

7= fq (x) dt, tyy () = S Gy, 0; B)q (E) . ©
D

It is readily verified that the sum of the first two terms, explicitly written out here, constitutes a
particular solution of Eq. (1), satisfying the boundary condition (2); in addition, uy (x) must satisfy the
Poisson equation

Au = —1} [7— ¢(@] (x€D) 10)

and the boundary condition (2), Since the mean value of the right side is equal to zero, the necessary con-
dition for solvability is satisfied; moreover, the solution of Eq. (10) is determined to within an arbitrary
constant term; for the given initial condition (3) this term can be determined from the relation

Sum (x)dx = S u,(x)dx.
b D

We note that the desired solution of Eq. (10) is given by the last expression in Egs. (9), which can
be rewritten in the form

Uy (%) = § [— G,y (x, 0; &) —Wl[_ [q—’_ q(g)] dg;
D

therefore, the function yGy(x, 0; £) represents the Green's function for the Poisson equation with the
boundary condition (2) (by the Green's function we understand here the kernel in the integral representation
of the solution of the problem in terms of its nonhomogeneous term). This enables us to form, in a num-
ber of cases, the dominant first term in the representation (7), thereby by-passing construction of the
Green's function G(x, t; £) for the Eq. (1).

It should be noted that the Green's function H(x; &) for Poisson's equation with the boundary condition
(2) and the symmetry condition H(x; £) = H(; x) is determined only to within the term g(x) + g(¢), where g
is an arbitrary function. This arbitrariness is connected with the fact that the study is carried out "on
the spectrum of the problem." This, in fact, defines the basic specific mathematical nature of the prob-
lem.
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If some Green's function H(x; £) is known for all x, £€D, we can then put
1 .
Gy(x, 0; B) =— TH(x; B +gx)+g@
and determine the function g from the condition of orthogonality to a constant (see Eq. (8)):

0=J@wo&W&nnﬁmea@+gwwwjg®@
D D D

whence
1 fad
mJ——p~-mea@
{D|
D
Taking averages, we obtain
;5: ~—§+—1—— —I:I, whence §= ~——]—~T1,
Y 2y
m@———LH+—Lija@
, 2y " viD| o
D
and, finally,
Gyx, 0 ) —— ——H (5 8)— —H
7 ¥

R PPN T (T Py
- 710 jH(A, E)YdE ~ 21Dl j H{x; Bydx.

D D

7. Let H(x; £) be known only for £€S, i.e., suppose that we know the Green's function for the second
boundary value problem for Laplace's equation, and let the support of q(x) belong entirely to 8, i.e., we
are talking here of initial heating of the domain D through its surface. In this case, just as in the conditions
of the last paragraph of §6, we can construct the function uy (x) directly, by-passing the construction of the
function Gy(x, 0; £). To do this, it is necessary to make, using the Eq. (10), the substitution

Uy (%) = v (x) - ~g§~ [/ (11)
as a result of which we obtain for v in D Laplace’s equation and the boundary condition
a N
% | Ly — T ixcos (% n) 12)
on s Y 3y

where n is the inner normal and b‘(x) is the intensity of the heat flow entering through S per unit area per
unit time; in addition, g = 1/ID| \ b(x)dx = (IS|/IDhb, where 18| is the area of the surface S. From Eq.

§
(12) we obtain, with the aid of the Green's function, an expression for v(x); from it and from Eg. (11) we
then find

b(€)

iwaa
. L

Uy (X) = %7? 2 = v
S

r} SN
+—§—{§{cos(;, n)Jdg - const. {13)

If the Green's function for the domain D is not known, the function v(x) can then be constructed num-
erically, for example, by solving the integral equation on S for the density of the potential of a simple
layer. We can also make use of an analogous equation obtained from the known integral representation
of the harmonic function v(x) in terms of the values of vl  and 8v/dnlg with the aid of an arbitrary funda-
mental solution of Laplace's equation. The situation simplifies somewhat if we choose the fundamental
solution such that its normal derivative is constant on a part of S: the integral equation need then be
solved only on the remaining part of 8. In this way we can eliminate from S a flat or spherical portion,
if such exists.
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Fig. 1. Homogeneous influx of heat over the surface and a heat
source at the point Aq4.

8. As one of the few cases in which the function H(x, £) can be constructed in closed form, we cite
the practically important case in which the domain D is a ball (see, for example, [4], p. 391). For £€S
this function is given by

1 2 1 2R
Hx &) =—— + —1In -+ const. 14)
w o R+ e — e cos (F, 3) |

By virtue of Eq. (13) we obtain

v 2R PN ”b(g)—%—R]dg—l—const

R -+ |x —&-—|x[cos (x, &) "

(henceforth we give the function uy (x)to within an arbitrary constant). This result can be simplified some-
what if we take into account the fact that the function (14) is harmonic in D with respect to x; therefore the

function
S‘[_:_+——ln AN ](‘TR d
g =8 R R 4 |x —E[—|xfcos (x, E )

is also harmonic in D. But since it depends only on ixl, it is then equal to a constant. (We can ascertain
its value. TFor this we need to put x = 0, whence we find that the integral is equal to (8/ 3)TrR2'oI.) Thus

4 1 ( [ 2

= ) (g

1 2R ’ .
ki ~ l b(2) dz. (15)
_ R+ |x—El—1x| cos (x, €)

9. For certain special classes of flows b(x) the expression (15) simplifies. This is the case, first
of all, if the flow is concentrated at individual points. The integral (15) is then replaced by a surm. Another
simple case is that of a homogeneous flow (b(x) = const), as indicated at the end of §8; the integral in Eq.
(15} then does not depend on x, i.e.,

e oo e
uzl (x) - 6\’ ‘xl 2’\7R \x\ . (16)
Of special interest are axially symmetric flows for which, in the spherical coordinates ¢ and ¢, the

intensity depends only on the latitude ¢, b = b(#). Let us assume, at first, that the flow Q is uniformly
distributed along the parallel 4 = ¢;. Then, by virtue of the relation (15),
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Fig. 2. Homogeneous influx of heat over the surface and heat
sources at the poles Ay and A,.

L

tyy (X) = tyy ({1}, §) = 8y R®

i Q ; 2 '
" 4mty j 1 4F + R*— 2 xR (sin ¥sin O,cos ¢ - cos§ cos §)
. 0

Ile—ln { 2R (R - ',lxj?+R'3 —2|x|R(sin ¥sin §,c0s ¢+ cos Fcos §,)

4
[

— Ix|(sin 9sin &, cos ¢ +-cos & cos 13-0))“1} ]dcp. amn

The integral of the first term in the square brackets is a complete elliptic integral; this is of little con-
venience, however, since the integral of the second term must be evaluated numerically; thus the evalua-
tion of the first term as an elliptic integral is an unwarranted procedure.

We note a particular case: for #y=0

e e @ 2
Uy (1%, &)= 8ryR® - Ay K VP + R —2[x[Rcos &

R R+ Vix*+ R —2|x| Reos & — |x] cos @
a corresponding expression is obtained for ¢, = w if the sign in front of the terms containing cos & is re~
versed. A second important particular case is obtained for arbitrary ¢, and 4 = 0 and 7, i.e., when the
temperature is considered on the axis of symmetry:

' 2R
= + —In
V' 1§+ R*— 2x,Rcos &, R R4+ x5+ R*—2x,Rcos ¥, —xyc089,

Uyy {¥g) == -
= (%) 3nyR® 5T 4ay

1
Q 2. Q[ 2 ] 19)

Relying on the expressions (17) or (19), we can easily write down, in the form of a repeated integral,
the stationary term in the temperature for an arbitrary axially symmetric heat flow.

10. Figure 1 presentstheisotherms for a heat influx of total power Q; when the flow Q, (3 is a
parameter) is uniformly (homogeneously) distributed over the surface while the flow (1 —3)Q, enters .
through the north pole Ay. In this case, by virtue of the relations (16) and (18), we have

PR Gl 1 [ 2

8nyR? 4y V iz — R — 2{x] Reos B
AP 2R 1

R R -+V[xff + R*— 2/ Rcos & —|xfcos ¢ |

To construct the isotherms we expressed this function in the coordinates p = v x% + x%, z = xg and then

Uy (%], 9) =
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Fig. 3. Homogeneous influx of heat over the surface and heat
sources at three points situated on a meridian.

numerically integrated the system of equations
dp 1 _Ouy dz 1 | Ouy

’

ds fgrad u,,| 0z ds |grad u,,| 9p

It is seen that a minimum point for the temperature occurs on the axis of symmetry, which depends
on B; this point can be found from the condition uy; = 0. An easy calculation shows that the corresponding
value of z is the only real root of the equation

ZR—2P+(1—-PRBR—2)=0,

moreover, zl3=0 =—R, zl;g:i =0, and z increases with 8 for 0 =3 = 1. When 3 < 0, the minimum of
the temperature is reached at the point z = —R.

Figure 2 shows the isotherms for the case in which the flow Q, is supplied uniformly through the
surface while equal flows 1/2(1 —B)Q, enter through the north and south poles. Here

, . Q 2 S22
Uy (0, 2) = &W;eg ©* 29
. (l—ﬁ}Qo[ 2 2
Co8ny L P-R—2F TR
1 4R?
+—1 e e
R [R—z=1 9 (R—2F|[R—z— 1 PR ] 0

For small 8 a circle of minimum temperature occurs in the equatorial plane; the radius of this circle
satisfies the equation
2 . 1 1
a—p| . |-

@ —R: RIP-RR— L R R

from which we deduce that as 3 is varied from 0to 0.6 the value of p decreases from R to 0, When 0.6
= 3 = 1, the minimum temperature is attained at the center of the ball (for 0 = g < 0.6 the temperature is
a maximum there). When B < 0, the minimum temperature is attained at the equator.

Figure 3 depicts the case in which the flow Q, is supplied uniformly through the surface while flows
1/3(1 —B)Q enter through the points Ay, A, and A; (A; and A, are positioned symmetrically with respect to
the vertical axis). The temperature field here is not axially symmetric. The picture of the isotherms is
shown only in the plane passing through the points Ay, Ay, and A4,

In Fig. 4 we show the case in which the flow BQ is supplied uniformly through the surface while the
rest of the flow (1 —~3)Q, enters uniformly through the equator. Here on the axis of symmetry we have

Qo 22 (1 -ﬁ)Qo | 2 A 1—111 2R '
8myR® 4y VAR ’

(2= KR TR

Exactly the same dependence is obtained as in the dependence of uy on p for z = 0 in Eq. (20). Therefore,
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Fig. 4. Influx of heat, uniform over the surface and concentrated
uniformly along the equator.

when 0 = 3 < 0.6, the minimum temperature is attained at two symmetrically-placed points on the axis of
symmetry whereas, when 0.6 = 3 = 1, the temperature is 2 minimum at the center of the ball (when 8 < 0,
it is 2 minimum at the poles). The case B < 0 corresponds to cooling through the surface and, owing to
the nature of the boundary condition, the actual value is smaller.

In the Figs. 1-4 the values shown are those of the dimensionless quantity Uy = 87y R3u,/Q,.

11. We employ the results obtained above for calculating approximately the thermo-capillary force
acting on a small heterogeneous inclusion (for example, a small bubble) W, placed in a liquid filling a con-
tainer D, under conditions of weightlessness, and initially heated by a constant influx of heat, q(x). We
assume that on the boundary I of the body W the coefficient of surface tension ¢ depends linearly on the
temperature, 0 = 03— 0yu, and we assume also that the body W introduces no essential perturbations in
the temperature field in its vicinity; this latter assumption is certainly satisfied with sufficient approxi-
mation. Then the energy of the surface tension associated with T is equal to

M= {{o,— o (x, 1 dx= (o, oa") L.
T

Therefore, as the thermo-capillary force we can take

F=—gradll~o, grad u" [Ti— o |T| grad uy, (x)

{on account of the small size of the body W we omit the averaging sign). Thus, the thermo-capillary force
is directed towards the side of the zone of the advancing initial heating.

Suppose that the inclusion W has the shape of a small ball of radius ry. Then as this small ball
moves with the velocity v, it is acted on by a viscous force equal, in accord with Stokes' Law, to —6mnryv,
where 17 = 7(u) is the temperature-dependent viscosity coefficient. Assuming the motion to be quasi-static,
we obtain the relation

20,7
2 R ,
brnyr,v = o deurg grad uy, (X), fe. V= # grad ty (¥).

The motion takes place along curves orthogonal to the family of isotherms.

We consider, in particular, the motion of the small ball along the axis of symmetry in the case of
axially symmetric initial heating of the ball through its surface. Let the flow entering along S be distrib~
uted with the density b = b(#). Then, by virtue of the relation (19), on the axis of symmetry we shall have

— It
ity (2) = : #+ . 5[ -
29R " dmy V 22-R®*—2zRcosd
1]
R R+ ; 224 R*—2zRcos & — z cos®
whence we find the equation of motion of the small ball to be

] sin 86 (§) d9;
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__R_gr[ 2(z— Rcos 9)
4m ) | (22 + R*—2zRcos §)*
0

) z2— Reos® —cos§ V' + R —9zRcos § ]sinﬁb(ﬁ)dﬁ}'
" R(R—zcos %+ 22+ R*—2zR cos §) 1/ 22+ R*— 2zRcos §

Thus, for the first example of §10 we obtain the equation

dz, 037 2 .
= [2(R—2zpF 4+ (1 —B)R*(BR—2)l,
dt  6aMyR*(R— 2 ( ( . PR
from which we can obtain the function z({t), subject to the given initial condition, by numerical integration.
In particular, when B =1, i.e., when the heat flow enters uniformly through the surface, we obtain, as-
suming, for simplicity, that all the parameters are temperature-independent,
dz 017,Q

037
=10 5 wh z =z, exp —2-2_¢f.
dat ErnyR® . & whenee 0 %P 6anyR®

The time of exit at the surface S of the ball is given by

o' Qp ol
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